Neutron star collisions said to be very rich sources of heavy metals

According to a study published in in Astrophysical Journal Letters, neutron star collisions are rich sources of heavy metals – nothing sort of a goldmine.

Scientists say that more heavy metals were produced in binary neutron star mergers, or collisions between two neutron stars, than in mergers between a neutron star and a black hole. The study is the first to compare two merger types in terms of their heavy metal output, and suggests that binary neutron stars are a likely cosmic source for the gold, platinum, and other heavy metals we see today. The findings could also help scientists determine the rate at which heavy metals are produced across the universe.

As stars undergo nuclear fusion, they require energy to fuse protons to form heavier elements. Stars are efficient in churning out lighter elements, from hydrogen to iron. Fusing more than the 26 protons in iron, however, becomes energetically inefficient.

Scientists have suspected supernovae might be an answer. When a massive star collapses in a supernova, the iron at its center could conceivably combine with lighter elements in the extreme fallout to generate heavier elements.

In 2017, however, a promising candidate was confirmed, in the form a binary neutron star merger, detected for the first time by LIGO and Virgo, the gravitational-wave observatories in the United States and in Italy, respectively. The detectors picked up gravitational waves, or ripples through space-time, that originated 130 million light years from Earth, from a collision between two neutron stars — collapsed cores of massive stars, that are packed with neutrons and are among the densest objects in the universe. The cosmic merger emitted a flash of light, which contained signatures of heavy metals.

Scientists wonder how might neutron star mergers compare to collisions between a neutron star and a black hole? This is another merger type that has been detected by LIGO and Virgo and could potentially be a heavy metal factory. Under certain conditions, scientists suspect, a black hole could disrupt a neutron star such that it would spark and spew heavy metals before the black hole completely swallowed the star.

The team set out to determine the amount of gold and other heavy metals each type of merger could typically produce. For their analysis, they focused on LIGO and Virgo’s detections to date of two binary neutron star mergers and two neutron star – black hole mergers.

The researchers first estimated the mass of each object in each merger, as well as the rotational speed of each black hole, reasoning that if a black hole is too massive or slow, it would swallow a neutron star before it had a chance to produce heavy elements. They also determined each neutron star’s resistance to being disrupted. The more resistant a star, the less likely it is to churn out heavy elements. They also estimated how often one merger occurs compared to the other, based on observations by LIGO, Virgo, and other observatories.

Finally, the team used numerical simulations developed by Foucart, to calculate the average amount of gold and other heavy metals each merger would produce, given varying combinations of the objects’ mass, rotation, degree of disruption, and rate of occurrence.

On average, the researchers found that binary neutron star mergers could generate two to 100 times more heavy metals than mergers between neutron stars and black holes. The four mergers on which they based their analysis are estimated to have occurred within the last 2.5 billion years. They conclude then, that during this period, at least, more heavy elements were produced by binary neutron star mergers than by collisions between neutron stars and black holes.

Back to top button